Single subunit chimeric integrins as mimics and inhibitors of endogenous integrin functions in receptor localization, cell spreading and migration, and matrix assembly
نویسندگان
چکیده
The ability of single subunit chimeric receptors containing various integrin beta intracellular domains to mimic and/or inhibit endogenous integrin function was examined. Chimeric receptors consisting of the extracellular and transmembrane domains of the small subunit of the human interleukin-2 receptor connected to either the beta 1, beta 3, beta 3B, or beta 5 intracellular domain were transiently expressed in normal human fibroblasts. When expressed at relatively low levels, the beta 3 and beta 5 chimeras mimicked endogenous ligand-occupied integrins and, like the beta 1 chimera (LaFlamme, S. E., S. K. Akiyama, and K. M. Yamada. 1992. J. Cell Biol. 117:437), concentrated with endogenous integrins in focal adhesions and sites of fibronectin fibril formation. In contrast, the chimeric receptor containing the beta 3B intracellular domain (a beta 3 intracellular domain modified by alternative splicing) was expressed diffusely on the cell surface, indicating that alternative splicing can regulate integrin receptor distribution by an intracellular mechanism. Furthermore, when expressed at higher levels, the beta 1 and beta 3 chimeric receptors functioned as dominant negative mutants and inhibited endogenous integrin function in localization to fibronectin fibrils, fibronectin matrix assembly, cell spreading, and cell migration. The beta 5 chimera was a less effective inhibitor, and the beta 3B chimera and the reporter lacking an intracellular domain did not inhibit endogenous integrin function. Comparison of the relative levels of expression of the transfected beta 1 chimera and the endogenous beta 1 subunit indicated that in 10 to 15 h assays, the beta 1 chimera can inhibit cell spreading when expressed at levels approximately equal to the endogenous beta 1 subunit. Levels of chimeric receptor expression that inhibited cell spreading also inhibited cell migration, whereas lower levels were able to inhibit alpha 5 beta 1 localization to fibrils and matrix assembly. Our results indicate that single subunit chimeric integrins can mimic and/or inhibit endogenous integrin receptor function, presumably by interacting with cytoplasmic components critical for endogenous integrin function. Our results also demonstrate that beta intracellular domains, expressed in this context, display specificity in their abilities to mimic and inhibit endogenous integrin function. Furthermore, the approach that we have used permits the analysis of intracellular domain function in the processes of cell spreading, migration and extracellular matrix assembly independent of effects due to the rest of integrin dimers. This approach should prove valuable in the further analysis of integrin intracellular domain function in these and other integrin-mediated processes requiring the interaction of integrins with cytoplasmic components.
منابع مشابه
Differential regulation of cell adhesive functions by integrin alpha subunit cytoplasmic tails in vivo.
Cell adhesion to fibronectin (FN) is crucial for early vertebrate morphogenesis. In Xenopus gastrulae, several distinct integrin-dependent adhesive behaviors can be identified: adhesion of cells to FN, assembly of FN fibrils, and initiation of cell spreading and migration in response to mesoderm inducing signals. We have taken a chimeric integrin approach to investigate the role of the integrin...
متن کاملThe alpha v beta 1 integrin functions as a fibronectin receptor but does not support fibronectin matrix assembly and cell migration on fibronectin
The fibronectin receptor, alpha 5 beta 1, has been shown to be required for fibronectin matrix assembly and plays an important role in cell migration on fibronectin. However, it is not clear whether other fibronectin binding integrins can take the place of alpha 5 beta 1 during matrix assembly and cell migration. To test this, we expressed the human alpha v subunit in the CHO cell line CHO-B2 t...
متن کاملSkeletal muscle LIM protein 1 regulates integrin-mediated myoblast adhesion, spreading, and migration.
The skeletal muscle LIM protein 1 (SLIM1) is highly expressed in skeletal and cardiac muscle, and its expression is downregulated significantly in dilated human cardiomyopathy. However, the function of SLIM1 is unknown. In this study, we investigated the intracellular localization of SLIM1. Endogenous and recombinant SLIM1 localized to the nucleus, stress fibers, and focal adhesions in skeletal...
متن کاملChemokine stimulation promotes enterocyte migration through laminin-specific integrins.
Intestinal homeostasis is regulated in part by the single cell layer of the mucosal epithelium. This physical barrier is a prominent part of the innate immune system and possesses an intrinsic ability to heal damage and limit infection. The restitutive epithelial migration phase of healing requires dynamic integrin adhesion to the extracellular matrix. Previously, we have shown that the homeost...
متن کاملA novel role for α3β1 integrins in extracellular matrix assembly
To study the biological role of α3β1 integrins in cell adhesion, migration, and in the deposition of extracellular matrix, we stably expressed the human α3 integrin subunit in the α4, α5 integrin deficient CHO cell line B2. The expression of α3β1 integrins enhanced cell adhesion on entactin (also known as nidogen), but not on fibronectin. Using recombinant GST-fusion proteins that span the enti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Cell Biology
دوره 126 شماره
صفحات -
تاریخ انتشار 1994